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A EULERIAN/LAGRANGIAN MODEL TO CALCULATE 
THE EVOLUTION OF A WATER DROPLET SPRAY 

PAUL CREISMEAS 
DGA/CEPr,  Suclay, F-91895 Orsay Cedex, Frunce 

SUMMARY 

We introduce a Eulerian/Lagrangian model to compute the evolution of a spray of water droplets inside 
a complex geometry. To take into account the complex geometry we define a rectangular mesh and we 
relate each mesh node to a node function which depends on the location of the node. The time-dependent 
incompressible and turbulent Navier-Stokes equations are solved using a projection method. The droplets 
are regarded as individual entities and we use a Lagrangian approach to compute the evolution of the 
spray. We establish the exchange laws related to  mass and heat transfer for a droplet by introducing a 
mass transfer coefficient and a heat transfer coefficient. The numerical results from our model are compared 
with those from the literature in the case of a falling droplet in the atmosphere a d  from experimental 
investigation in a wind tunnel in the case of a polydisperse spray. The comparison is Fairly good. We 
present the computation of a water droplet spray inside a complex and realistic geometry and determine 
the characteristics of the spray in the vicinity of obstacles. 

K E Y  WORDS Diphasic flow Eulerian/Lagrangian model Complex geometry Projection method Navier-Stokes 
equations 

1. INTRODUCTION 

Many practical problems involve fluid flows containing droplets. These problems range from 
fuel combustion and evaporation to the evolution of subcooled water droplets in the open 
air.’-’* In this paper we are interested in problems concerning the evolution of a water spray 
inside a complex geometry. Two fundamentally different ‘ ‘ approaches exist to describe such 
flows: the first approach, which is usually termed the ‘Eulerian/Eulerian’ method or ‘two-fluid 
model’, considers the droplet spray as a continuous phase; the second approach, called the 
‘Eulerian/Lagrangian’ method, considers the spray as a discrete phase. The main advantages of 
the former method seem to be its great computational efficiency to resolve monodisperse 
f l o ~ s ’ ~ - ’ ~  and the possibility to take into account the coupling of the two phases. However, if 
the diphasic flow is a polydisperse one, the latter method is more appropriate. The Eulerian/La- 
grangian method is also a powerful and efficient tool for the analysis of droplet impacts.” A 
quite popular method to take into account the turbulence is the ‘Monte Carlo’ meth~d. ’~ . ’ ’  
However, it can be shown in the case of non-homogeneous and non-isotropic turbulence, e.g. 
in a mixing area or behind an obstacle, that small-scale turbulent diffusion can be neglected 
compared with large-scale turbulent 

The water spray generated by nozzles is not generally a monodisperse spray. In our case the 
droplets range from around 5 to 100 pm, so we choose a Eulerian/Lagrangian method to describe 
the evolution of the water spray. This choice allows droplets to retain their individual 
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characteristics and avoids the problem of numerical diffusion.2o Each computational droplet 
represents a class of droplets possessing the same size. To be representative, the computation 
requires a large number of droplets, but our experience shows that this number need not to be 
too excessive. The ratio of total mass of water injected to that of air is small, so we can consider 
the two phases to be uncoupled. However, the problem is not reduced to the calculation of 
trajectories in a known velocity field, since droplets tend to evaporate. In order to take this 
effect into account, we need mass transfer and heat transfer laws. Willbank and Schulz2' introduce 
an analytical model to calculate the evolution of a water spray in a wind tunnel. They consider 
the continuous phase of the diphasic flow as an air-water vapour mixture and a coupling between 
droplet evaporation and thermodynamic characteristics of the continuous phase. Their results 
are accurate, but unfortunately the method is restricted to unidimensional and inviscid flows. 
The model described in this paper differs from that of Willbank and Schulz mainly in a 
reformulation of the exchange laws, which allows us to take into account the turbulence through 
correlations related to the Sherwood number for the convection and to the Nusselt number for 
the heat transfer; furthermore, our model takes into account multidimensional and viscous flows. 
We consider the continuous phase as an air flow and we neglect the influence of the evaporation 
of droplets on the saturation of air. We assume no interactions, no collisions and no coalescence 
of droplets. The only forces acting on droplets are the aerodynamic drag and gravity. The 
turbulence is neglected in this effect. To calculate the gas phase, we consider the 2D, 
time-dependent incompressible Navier-Stokes equations in terms of mean velocity and we use 
a mixing length model of the turbulence. Numerical results are compared with results from the 
literature or with data from experimental investigations. The correspondence is fairly good. 

In Sections 2 and 3 we introduce the governing equations for the continuous and discrete 
phases. The time discretization method is presented in Section 4. In Section 5 we compare the 
results from our model with those of Beard and Pruppacher' and Pruppacher and Klett.' We 
present a numerical simulation of a droplet spray in a realistic geometry in Section 6 and we 
conclude in Section 7. 

2. BASIC EQUATIONS FOR CONTINUOUS PHASE 

We consider the time-dependent turbulent Navier-Stokes equations for an incompressible flow, 

aui 
axi - = 0, 

- + u . - = - - -  a P + ~ a [ v ("ui - + - aui) - -1, u!u'. (2) 
aui aui 
at axj axi axj  axj axi 

where po is the density and v is the kinematic viscosity. To evaluate the Reynolds stresses, we 
use the Boussinesq relation 

aui au. -@ = v,(% + -> - 3dijk, axi ( 3 )  

where v, is the turbulent viscosity, dij is the Kronecker symbol and k is the kinetic energy. This 
term can be regarded as a 'turbulent pressure' term and can be included in the pressure terms.22 
Thus we obtain 

au i  aui a a 
-- + uj - = - - P + - [2(v + V,)SiJ], 
at axj axi axj  (4) 
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Figure 1 Computational domain 

where 

If we consider a 2D fluid flow and set ( u ~ ,  u2) = (u, v), then (1H4) become 

au a au a ($ + u ax + v ”) - ~ (2( 
ay ax 

a’ (6) 

au av 
ax  ay 
- + - = o .  

To calculate v , ,  we use the Smagorinksy 

1 

Po 
V ,  = -~ (c ,  A x  A Y ) ~  

(7) 

where A x  and b y  are the mesh sizes in directions x and y respectively and c, is a constant of 
order 0.1. 

u robst, where 
Ti and re are the entrance and exit sections of the flow respectively, r represents the upper and 
lower walls and robs, is the limit of the obstacles (Figure 1). The boundary conditions for the 
velocity 3,, are a no-slip condition on r and robs, (i.e. tir = 0 and firoh, = 0), a given ti,, on Ti 
and a free exit condition on re. 

If at2 is the limit of the computational domain, we can write at2 = Ti u re u 

3. BASIC EQUATIONS FOR DISCRETE PHASE 

3.1. Assumptions 

Heat diffusion and species diffusion obey a Fourier law. We consider that the liquid/vapour 
interface is in thermodynamic equilibrium, so the pressure over the surface of droplets is equal 
to the saturation vapour pressure. We neglect droplet coalescence and droplet collision effects 
and the only forces taken into account to calculate droplet trajectories are the aerodynamic 
drag and gravity. The turbulence is neglected for droplet trajectories but is taken into account 
for droplet heat and mass exchanges through correlations related to the Sherwood number for 
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the convection and to the Nusselt number for the heat transfer. The discrete and continuous 
phases are uncoupled, the mixture of air and water vapour is considered to have the same 
behaviour as the air only and the droplets are spherical. 

3.2. Mass calculation 

Pruppacher and Klett's m e t h ~ d , ~  i.e. 
To calculate the mass rate of exchange, we introduce a mass transfer coefficient according to 

Here p o  is the density of air, Pv,d  is the pressure of water vapour at  the surface of the droplet 
and, according to a previous assumption, also the pressure of saturation vapour at the surface 
of the droplet, md is the mass of the droplet, p is the pressure of air and pu is the actual pressure 
of water vapour in the environment, which can be expressed by introducing the saturation hg as 

pv = hgPv+sat, (10) 

where pv,sat is the water vapour pressure in the environment at saturation. R is the total area of 
the body concerned and is related to the perimeter pr of its area projected in the direction of 
the flow by the relation' 

In the case of a trivial geometry such as a droplet we have L = d d ,  where dd is the droplet 
diameter. By introducing R and pr, we are able to extend the expression of kv,* to complex 
geometries such as an ice crystal. The ventilation effect is described in terms of the Sherwood 
number, which depends on the characteristic length L according to7 

where D, is the diffusivity water vapour in air. Equations (9) and (12) give us 

dmd R hgpv,sal - Pv.d 
- ShdD,po --. 

dt L P - P v . d  

For a droplet we have R/L = nd,. We introduce the molar proportion of water vapour in the 
environment as 

hgPv,sat 
X" = - 

P 

and the molar proportion of water vapour at the surface of the droplet as 

P v ,  d x,, = -. 
P 

Then, using (14) and (15), equation (13) can be recast as 
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The Sherwood number is calculated as7 

Shd = 2fv, 

wheref, is a ventilation coefficient defined as 

dm,/dt 
f ,= 

(dmd /dt)O ’ 

with the subscript ‘0’ denoting the droplet at rest in the flow. Introducing the Reynolds number 

1 I/ - Re, = 
V 

where V is the value of the Euclidean norm of the air velocity in the vicinity of the droplet and 
Vd is the Euclidean norm of the droplet velocity, and the Schmidt number 

we have’ 

f ,  = 1 + 0 .108S~; ’~ReA’~  

f ,  = 0.78 + 0 . 3 0 8 S ~ ~ ’ ~ R e ~ ’ ~  

if ( S ~ i ’ ~ R e i ’ ~ ) ~  < 1-4, 

otherwise. 

3.3. Droplet surface temperature calculation 

In analogy with (9) we define the heat transfer coeffficient 

d d d t  h, = 
R(T - T,)’ 

where Td is the temperature of the droplet surface and T is the temperature of the environment. 
We also introduce the Nusselt number 

h, L Nu,  = -, 
k 

where L has the same definition as in ( 1 1 )  and k is the thermal conductivity of air. In the case 
of a spherical droplet we have R/L = nd,, where d ,  is the droplet diameter. Hence (23) and (24) 
give us 

When a droplet is placed in a environment at  T # &, we have a heat flux from the air to the 
droplet if T > G or from the droplet to the air if T < &, and this heat flux is given by expression 
(25). If the saturation is hg < 1, we also have a loss of heat by evaporation given by - H,,dm,/dt, 
where H , ,  is the latent heat of evaporation. Thus the total rate of droplet heat evolution is 
expressed by 
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Given the heat and mass relation 

(26) becomes 

If we assume that dT/dt << dTd/dt, we finally obtain 

The Nusselt number is calculated as7 

= 2fh9 

wheref, is a thermal ventilation coefficient defined as 

with the subscript '0' denoting the heat exchange when the droplet is at rest in the flow. To 
calculatef,, we introduce the Prandtl number Prd for a droplet as 

where ,u and cp are the viscosity and heat capacity of the gas phase respectively. Then 

fh = 1 + 1.108(Rei'2PrA'3)2 

f h  = 0.78 + 0.308ReA/2Pri/3 

if ReA/2Pri'3 < 1.4259, 

otherwise. 

3.4. Trajectory culculution 

For a droplet the balance of forces acting on it can be set in the form 

(33)  

(34) 

where - 
b = m d v d  (36) 

and qd is the instantaneous velocity of the droplet. If we consider that the only force which acts 
on the droplet is the aerodynamic drag, the right-hand side of equation (35)  can be expressed as 

fext = ipn(dj/4)c,/v - vd/ (  - vd)> (37)  

where is the air velocity in the vicinity of the droplet and c, is the drag coefficient given by 

24 
c ,  = ( 1  + 0.15Re,0'687). 

Red 



EVOLUTION OF A WASTE DROPLET SPRAY 141 

The droplet is assumed to be spherical, so by projecting (35) on the x-axes and y-axes, it is possible 
to write, setting v = (u, v )  and vd = (ud, ud), 

4. METHOD FOR TIME DISCRETIZATION 

4.1.  Time discretization for gas phase 

We employ a projection method first introduced by ChorinZ4 and Temam2’ for laminar flows 
to resolve the turbulent equations (1H3). At time nAt the solution (u, u)”” is decomposed on 
two orthogonal subspaces defined as follows 

(u, v )  E {L2(Q)/div(u, u)  = 0} inside Q, 

H I  = grad(H’(R)), 

(u, u )  . n = 0 on the boundary aQ, 

where 

1/2 

L2(Q) = (u, u)/ / I  (u, 0)  119 dx < a , ll(u, u ) I / L ’ =  (s, ll(u, 4Il2 dx) i s, I 
and H’(R) is a first-order Sobolev space. Thus we have L2(Q) = H @ H I .  We define the projection 
P,,: L2(Q) -+ H and it is possible to write 

V(u, v )  E Lz(Q) 3 p  E H’/(u, v )  = P,(u, v )  + grad p .  

The principle of the projection is based on a predictor<orrector strategy. It consists of 
calculating a predicted velocity (u*, v * )  so that 

U * - - n  ~- + un au* - + vn au* - a ( 2 ( v + v , )  :x*)-ij ( ( v + v , )  :y*)-:y ( ( v + v , )  g ) = O ,  (41) 
At ax ay ax 

At ax ay ax 

where (u, v)” is the velocity that has been computed at the nth step and (u*, u* )  satisfies the 
correct boundary condition. Note that (u*, v * )  does not satisfy the incompressibility condition. 
The velocity field (u*, v * )  is corrected by projecting it in H. We use P ,  to project (u*, u*)  onto 
H and we set 

(u, v )”+ ’  = P,(u*, v*) ,  

i.e. 

(u, v)” + = (u*, v * )  - vp. 
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a u n + l  a u n + l  

+-- - 0. ax aY 
(45) 

The projection method is a fractional step method which uncouples the velocity and pressure. 
The numerical efficiency of the scheme is obvious, since the velocity and pressure are totally 
uncoupled. By applying the divergence operator to (43) and (44) and using (49, we find a Poisson 
equation for the pressure: 

v . (u*, u*) 
A p  = 

At ' 

= 0 on the boundary an. 
an 

4.2. Time discretization for discrete phuse 

Equations (16), (29), (39) and (40) can be written in the form 

am 
at 
_ -  - s, 

(47) 

where @ = {md; Td; mdud; MdUd} and S is the second member associated with the quantity 
concerned. A first-order explicit scheme yields 

@"+ 1 - @" 

At 
= S", (49) 

@"+'  = @" + AtS". 

This method requires very small time steps, but on the other hand needs a very low mass 
storage. 

(50) 

5. NUMERICAL RESULTS 

5.1. Euuporation of u fulling droplet 

Studying a falling droplet in an atmosphere at rest allows us to have values of the Sherwood 
and Nusselt numbers different from 2, as shown in Figure 2 for a falling drizzle droplet in an 
isothermal atmosphere. Corresponding to the very short acceleration phase of the droplet, we 
notice an increase in value of the Sherwood and Nusselt numbers up to their maximum value 
around 12. The following phase is relatively slow and marked by a linear decrease due to both 
falling drop ventilation and droplet evaporation. 
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Figure 2 Evolution of Sherwood and Nusselt numbers during fall of 1200 pm initial diameter droplets 

We consider two cases of falling croplet. In the first case we study the evaporation of a falling 
drizzle in a isothermal atmosphere (5  "C). The initial diameter is 1200 pm and the depth of fall 
is 2000 m. In the second case we determine the minimial value of the initial diameter for a droplet 
to survive a 300 m fall depth in a isothermal (0 "C) and isobaric (750 mbar) atmosphere. In both 
cases we compare our results with those of Beard and P r ~ p p a c h e r . ~  

In the first case the computation is performed for two saturation values, 80% and 40%. Figure 
3 shows the results of the calculation and the comparison with Beard and Pruppacher's results. 
When the value of the saturation parameter is SO%, the curve resulting from our computation 
and that resulting from Beard and Pruppacher's computation are in good correspondence; the 
maximal difference is around 5%. However, when the value of the saturation parameter is 40%, 
our results tend to overestimate the droplet evaporation compared with those of Beard and 
Pruppacher; in this case the maximal difference is 23%. 

In the second case we use only one value of the saturation, namely 90%. Figure 4 shows the 
comparison between Beard and Pruppacher's numerical results and our numerical results. From 
a qualitative point of view the two curves are in good correspondence and one may observe a 
quasivertical tangent at the start of both curves. However, from a quantitative point of view a 
discrepancy exists if we compare the values which build the curves: according to our calculation, 
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Figure 3. Evolution of a drizzle drop: comparison between Reference 9 and our computation 
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Figure 4. Final size of drops of various initial diameters in isothermal (0 “C) and isobaric (76.5 kPa) atmosphere (depth 
of the fall, 300 m) 

the limiting diameter for whole droplet evaporation is 230 pm, instead of around 212 pm 
according to Beard and Pruppacher. The difference between the two calculations is 8.5%. 

This difference results mainly from the assumption in our computation that the saturation 
remains constant around and in the vicinity of the droplet during its fall and so the quantity of 
water which becomes vapour does not alter the initial saturation value. Let us examine the 
influence of the vaporized water on the saturation value around the droplet. The saturation hg 
can be defined by 

where pv,real is the density of water vapour when the partial pressure of vapour is equal to the 
saturation pressure and pv,sat is the density of water vapour around the droplet. Before the 
droplet fall (51) can be written as 

~ v ,  real. 0 = hgo ~ v .  sat, 0 (52) 

and during the fall at  high y as 

If we set the ratio hg,/hgo, we obtain 

If the thermodynamic conditions remain constant around the droplet, we have pv,sa,.o/pv.sal.y = 1 
and (54) becomes 

We express (55) in terms of the water vapour mass by assuming that the water vapour is a 
perfect gas: 
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Setting mv,y = mvqo + Amday, where Am,,, is the water mass which becomes vapour when the 

droplet diameter drops from its initial value d,,, to the value dd,y at high y, we have 

In the case of droplet evaporation we have Amd,y > 0, so hg, > hg,; hence the value of the 
saturation increases in the vicinity of the droplet and the evaporation phenomenon tends to be 
slowed down. Keeping the saturation constant leads to an overestimation of the quantity of 
water which evaporates. According to relation (55) ,  we also notice that keeping the saturation 
constant around and in the vicinity of the droplet means keeping the water vapour density 
constant too. Beard and Pruppacher' and Pruppacher and Klett' take into account the difference 
in vapour density between the vicinity and the environment to calculate the evolution of the 
diameter of a falling droplet, so the evolution of the saturation value in the vicinity of the droplet 
is taken into account implicitly. 

Two reasons lead us not to adopt the Beard and Pruppacher modelling. First of all, the 
expression of droplet diameter evolution obtained in the case of a non-constant water vapour 
density introduces exponential calculations which will make the computation time long if we 
have to deal with numerous droplets. Secondly, in our domain of interest the distance within 
which we are studying droplet clouds is around lOm and we can see in Figure 3 that the 
difference between Beard and Pruppacher's model and our model is almost negligible even at 
y = 100 m (for hg = 80% the difference is 0.3% and for hg = 40% the difference is 0.8%). 

5.2. Evaporation of a polydisperse spray 

In this subsection we consider a group of droplets with diameters in the approximate range 
from 5 to 60pm. Each droplet is assumed to be injected into the flow with an initial velocity 
of 5 m s -  '. Figure 5 shows the evolution of the Reynolds number after injection for 10, 20 and 
60 pm initial droplet diameters. The presented results have been computed with a constant 
aerodynamic velocity equal to 13 m s - ' .  

Note that the value of the Reynolds number decreases very rapidly through a transient droplet 
motion corresponding to Sherwood and Nusselt numbers around 4 (i.e. high ventilation) to 

P 

0 0.05 0.t 0.15 0.2 0.Z 0.3 0.35 0.4 0 . 6  0.5 - bn) 

Figure 5. Evolution of Reynolds number for 10, 20 and 60 pm initial droplet diameters (gas velocity 13 m s - ' ;  initial 
droplet velocity 5 m s -  ') 
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Table 1. Aerodynamic conditions for 
granulometry measurements in a 

wind tunnel 

Velocity (m SKI) 13.1 
Averaged hygrometry (YO) 45 
Static temperature (”) 27 
Turbulence rate (YO) 1 

reach a zero value corresponding to the steady state of the droplet motion, the Sherwood and 
Nusselt numbers then being equal or close to 2 (i.e. no ventilation). For a 20 pm droplet diameter 
the steady state flight is reached at x = 0.05 m and for a 60 pm droplet diameter the same state 
is reached at x = 0.35 m. However, if we postulate a 10% error in the value of the Sherwood 
and Nusselt numbers for no ventilation, it can be assumed that all droplets with a diameter 
within a range up to 60 pm have reached the steady state motion at 0.25 m. 

have been obtained 
for a droplet cloud under the aerodynamic conditions summarized in Table I. The droplet cloud 
is obtained through a pneumatic nozzle. Two series of granulometry measurements are 
performed by means of a ‘Malvern’ device. The first and second series of measurements were 
performed at 0.25 and 1.95 m respectively from the spray outlet. We quantify the evaporation 
of the droplets between 0.25 and 1.95 m through the median volumic diameter (MVD). The 
values of the investigated MVD are 13.64, 17.49, 25.50, 33.80 and 40.21 pm with diameters 
ranging from about 5 to 60 pm. Numerically we use a classical turbulent profile to simulate the 
wind tunnel air flow. The cubic spline interpolation method is used to calculate the MVD value 
from the mass distribution of droplets per class of dimeter.” The MVDs obtained from 
measurements have been recalculated by mean of cubic splines to allow a coherent comparison 
between numerical and experimental results. All droplets are assumed to have the same speed 
as the flow when injected and their initial temperature is 15 “C. The value of the time step for 
Euler integration is 5 x and the number of time steps is 31,000. Every run lasts around 
3 h on a SUN/SPARK IPX workstation. In Figure 6 we follow the evaporation of droplets for 

Experimental data from granulometry measurements in a wind 
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Figure 6. Evolution of droplets of 10.20 and 60 pm initial diameters (velocity of aerodynamic flow, 13.1 m s -  ’ ; saturation 
42%; velocity of injection, 5 m s -  ’) 
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Table 11. Comparison between numerical and experimental data. The 
results in columns ( 1 )  and (2) are calculated by means of a cubic spline 

method from experimental data 

x = 0.25 m x = 1.85 m x = 1.95 m Difference 
measurement measurement computation ((2) - (3))/2 

(1) (F) (2) (m (3) (P) (%I 

13.38 18.46 19.80 1.26 
18.18 23.44 22.6 1 3.54 
25.28 30.30 30.13 1.42 
32.56 38.82 38.04 2.0 1 
41.01 45.50 45.12 0.48 

10, 20 and 60 pm initial droplet diameters. Note that small-diameter droplets are very sensitive 
to the saturation conditon and are evaporated within 2 m of injection. We deduce that between 
0.025 and 1.95 m the DVM of the cloud tends to increase. 

This phenomenon is confirmed by experimental data which are presented together with the 
numerical data in Table 11. It can be seen that the difference between computational and 
experimental data is within 8 %  for low M V D  values (around 13 pm) and within 4% for M V D  
values greater than 18 pm. 

We notice that the difference is rather high for low M V D  values and decreases as the M V D  
value increases. This phenomenon is not significant, since the difference is within experimental 
uncertainty. We can consider that the experimental data and computational results are in good 
agreement. 

6. CALCULATION IN REALISTIC GEOMETRY 

We present a computation of the evolution of a droplet cloud considering a realistic geometry. 
This geometry is representative of a test cell with a helicopter air intake as the test object inside. 
The helicopter air intake is equpped with its turboshaft engine. A previous study2* shows that 
high-diameter droplets are breathed by the engine in spite of their high inertia. In this section 
we are interested in the determination of the characteristics of the droplet cloud in the vicinity 
of the test object. 

6. I .  Spatial discretization 

(xa, ya) x ( x b ,  y b )  which includes the geometry concerned as 
To take into account a complex geometry, we define a mesh on the rectangular domain 

X i , i = l , . . . , n /  X I  = x a ,  x n  = x b ,  X i - 1  x i  x i + l ?  

x j . j = l . . . . . r n /  Y l  = Ya, Ym = Y b ,  Y j -  I 5 Y j  Y j +  1' 

We relate each node to a node function 3i,j in fact an 'impermeability' function, defined as 

The value of the function 3i+j depends on the location of the node: 0-value is for the computable 
part of the domain and 10-value is for the non-computable part. Intermediate values from 1 to 
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3 test. object: 

nozzle engine 

Figure 7. Geometry of test problem 

4 are for nodes in the vicinity of walls and values from 5 to 8 are nodes located at corners. Thus 
we are able to recognize the inner limits of the obstacles and we can impose appropriate boundary 
conditions for velocity and pressure field calculation. If 3i,j = 9, we impose the velocity on the 
node. This possibility is used when a simulation of an engine run is required. The main 
advantages of such a method are its simplicity and its great adaptability. However, in the case 
of a very complicated geometry the ratio of the number of nodes in the non-computable part 
of the domain to the number of nodes in the computable part may be quite important. As a 
result, the time spent on useless nodes may be not negligible. Another advantage of the method 
in our case is that the function 3i,j can be used to calculate whether a droplet is in the vicinity 
of a wall or not, as we will see later. 

Equations (41), (42) and (46) are discretized by means of a classical finite difference method 
on a staggered marker-and-cell (MAC) mesh introduced by Harlow and Welch.29 A second-order 
'power law' scheme30 which takes into account the local characteristics of the flow is used for 
the convective term discretization and a centred second-order scheme is used for the diffusive 
term discretization. The resulting linear systems are solved through a preconditioned conjugate 
gradient meth0d.j' 

The computation is carried out on the geometry shown in Figure 7. We choose to have an 
extended exhaust in order to minimize the effect of the outflow boundary conditions on the 
upstream recirculation zones. A uniformly distributed mesh is used across the domain. The 
number of nodes is 219 in the flow direction and 191 in the transverse direction. The ratio of 
non-computable nodes to computable ones is about 0.3. 

6.2. Numerical run conditions and results for aerodynamic f low 

The projection method described in the set of equations (41t(47) is not time-accurate enough 
to be used for unsteady p h e n ~ m e n a . ~ ~ . ~ ~  We use time marching only to reach an approximation 
of a steady state solution of (41H47). In that case the steady state solution is regarded as an 
asymptotic limit of a time progression. 

The calculations are carried out at a Reynolds number of lo6 and a Mach number of 0.2. 
The Reynolds number is based on the end diameter of the Mach nozzle. To have a divergence-free 
velocity field for the first time step, the potential flow is used on initial solution. The value of 
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i = l ,  ..., n ;  j = 1 ,  ..., m 

0 5 10 15 20 
Figure 8. Result of air flow computation 

the time step is 0.02. We stop the computation when we detect no significant evolution of the 
velocity at the entrance of the exhaust and this state corresponds to a dimensionless time value 
of 40. The computation time is 40 min on the CRAY YMP of ONERA and the mean value of 
the velocity divergence is around 

The result of the aerodynamic computation is shown in Figure 8. 

6.2.1 Initial conditions for two-phase calculation. To be able to calculate the evolution of water 
droplets in the aerodynamic flow through equations ( l l ) ,  (29), (39) and (40), we need to know 
the temperature field and the saturation field. As a matter of fact, the quantity x, related to a 
droplet in equation (16) has the definition 

where hg is the saturation of the flow around the droplet, T is the static temperature, p is the 
static pressure and e,(T) is the saturation pressure related to the temperature T We define the 
saturation hg as 

with 
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Table 111. Initial mass distribution of 
droplets as a function of diameter for a 

DVM value of 25.1 5 pm 

Diameter (pm) Percentage of mass 

5.80 4.73 
7.20 2.4 1 
9.10 3.42 

1 1.40 4.02 
14.50 7.65 
18.50 8.96 
23.70 14.80 
30.30 17.22 
39.00 19.33 
50.20 15.9 1 
64.60 1.55 

At each time step and for each droplet the gas velocity, saturation and temperature at the 
location of the droplet are calculated through a bilinear interpolation from the values of the 
corresponding fields at the four nodes in the vicinity of the droplet location. 

For the spray we consider a 25.15 pm MVD cloud and we present the mass distribution in 
Table 111. 

To introduce droplets in the aerodynamic flow, we define a rectangular area located at the 
entrance of the geometry and inside the Mach nozzle. Inside this injection area the location of 
each injected droplet is calculated through a random function. All droplets have the same 
injection velocity (5 m s -  I )  and injection temperature (G = 15 "C). The spray is composed of 
about 1100 droplets. The time step value for Eulier integration is and the number of steps 
is 10,000. A run lasts around 1 h on a SUN/SPARK IPX workstation. 

6.2.2. Numerical results for droplet spray. Figures 9-11 show the cloud computed at three 
important locations, first at the exit of the Mach nozzle, second when impacting the obstacle 
and third near the air intake. During the cloud motion in the Mach nozzle the important 
environment saturation (around 93%) causes no noticeable evolution of the characteristics of 
the cloud and in particular the MVD remains constant. Near the leading edge of the obstacle 
we have to deal with the problem of the determination of impacting droplets. To calculate the 
trajectory of a droplet in the vicinity of a wall, we need to know the aerodynamic flow field 
near the wall and then we have to calculate the boundary layer accurately. In our case we do 
not have enough nodes near the obstacle walls to compute the boundary layer, but we are able 
to know whether a droplet is in the vicinity of a wall by means of the function (3i,j)i= ..,,"; j =  ,_,, 

defined in Section 6.1. As a matter of fact, if we suppose a droplet location to be 

where nd is the number of droplets in the cloud, (xd, yd)i<, belongs to the node (xi, yj)i= _.. .,,: j= ___. 
defined as 
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0.0 2.5 5.0 7.5 10.0 
Figure 9. Spray at end of convergent nozzle 

0.0 2.5 5.0 7.5 10.0 
Figure 1 I .  Spray breathed by engine through air intake 
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Table IV. Evolution of ratio rc.iclass 

Class of diameter (pm) Ratio r<.iclass (YO) 

5.80 3.60 
1.20 6.00 
9.10 3.20 

1 1.40 7.60 
14.50 7.20 
1830 7.20 
23.10 10.40 
30.30 8.80 
39.00 14.00 
50.20 13.20 
64.60 18.80 

Impact < 30 pm 45.20% 
Impact > 30 pm 54.80% 
‘Vicinity’ MVD 21.3 pm 

We define the following summation on the node (xi, yj)i= 1 ,  ...,”; j =  ._... 

The droplet is in in the vicinity of the wall when 

i i . j  > 10 (62) 

I t  can be noticed that the ‘vicinity function’ to be computed once and for all before carrying 
out the droplet evolution computation. In the case of a front impact we assume that all the 
droplets located in the vicinity of the wall are droplets which will impact the wall. Thus we can 
calculate the number of droplets which have a high probability of bumping into the obstacle 
on the leading edge but we cannot determine the location of the impacts. In Table IV we report 
the value of the ratio 

where nclass is the number of classes of droplet diameter in the cloud, mi,iclass is the mass in the 
vicinity of the obstacle related to the class number iclass and mO,ic lass  is the initial mass of droplets 
related to the class number iclass for each class of droplet diameter in the cloud. 

The droplets are almost equally distributed among low-diameter droplets (d < 30 pm) and 
high-diameter droplets (d  > 30 pm), with a slight advantage for low-diameter droplets. The local 
(‘vicinity’) M V D  is assessed to be 27.3 pm, which is of the same order of magnitude as the initial 
cloud M V D  (27.1 15 pm). If we assume that all the droplets in the vicinity of the leading edge 
are impacting droplets, but on the other hand we suppose that an impacting droplet vanishes, 
we can calculate that the M V D  of the cloud far from the wall jumps from 25.15 to 23.9 pm. 

Near the air intake we define a local rectangular area QScreen as follows: length, 1 m centred 
on the aperture of the air intake; height, 5 cm from the wall. These dimensions correspond to 
the usual location of an air intake screen on a helicopter test object. We pay some attention to 
determine first the ‘air intake’ MVD, which is related to the droplets inside the previously defined 



EVOLUTION OF A WASTE DROPLET SPRAY 153 

Table V. Droplets breathed through air intake 

Class of diameter (pm) Percentage breathed by 
air intake 

5.80 
7.20 
9.10 

1 1.40 
14.50 
18.50 
23.70 
30.30 
394Xl 
50.20 
64.60 

Impact < 30 pm 
Impact > 30 pm 

‘Incoming’ MVD 

11.21 
10.57 
1 1.52 
10.25 
10.25 
9.62 
8.88 
8.88 
7.08 
6.66 
5.07 

72.30% 
27.70% 
13.35 pm 

are Q,,,,,,, and second the ‘incoming’ MVD, which characterizes the droplets breathed by the 
engine through the air intake (Table V). 

For the nodes which belong to RScreen we set 

g ( X i 9  Yj)cx , .y , ,ERcreen - - 1 1 ,  (64) 

where 3(xi, yj )  is the node function previously defined. From equations (64) and (61) we obtain 
the relation 

(65) 

By testing the value of {i,j at each time step, it is easy to know whether a droplet is in the domain 
Q,,,,,, or out of the domain Qscreen, since at  each time step we can determine the mass distribution 
of the cloud inside the domain QScleen and the corresponding MVD. the final ‘air intake’ MVD 
is the result of a time average. 

The value computed for the ‘air intake’ MVD is 18-74 pm. The difference between this and 
the MVD of the cloud far from the wall is significant (21%) and we are led to think that 
high-diameter droplets tend to remain far from the area concerned because of their momentum. 
This phenomenon is emphasized for the droplets breathing in the air intake. The incoming MVD 
value is 13.35 pm and by computing the ratio (63) on the domain QScreen, it can be noted that 
72% of the engine-breathed droplets have a diameter smaller than 30 pm (Table V). 

i i . j l i = i  ,..., n; j = l .  .... rn = 44 0 (xi, Y j ) i = 1  ..... n; j = 1 .  .... r n E R s c r e e n .  

7. CONCLUDING REMARKS 

To compute the evolution of a water droplet spray inside a complex geometry requires two main 
points. First we have to take into account the obstacles located in the flow. Second, if we consider 
the droplets of the spray capable of evaporation, we need to have exchange laws related to mass 
and heat transfer for the droplets. 

In our case the mass and heat transfer laws are deduced from the definition of the heat and mass 
coefficients and we assume that in the vicinity of the droplet the quantity of vapour in the air 
remains constant during the whole computation. This assumption leads to important differences 
between our numerical results and the literature results in the case of a distance of computation 
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around 1000 m. However, in our domain of interest the distance of computation does not exceed 
10 m and in this case the results obtained from our modelling are very close to the literature 
results. Our results are also close to experimental data obtained from granulometry measure- 
ments in a wind tunnel. 

In the case of a complex geometry we introduce a function related to the nodes which separates 
the nodes into two groups, a computable one and a non-computable one. Thus we are easily able 
to take into account the obstacle in the flow for the gas flow computation and for the droplet 
trajectory calculation too. In the case of a realistic geometry we are able to follow each droplet of 
the spray and determine the local characteristics of the spray in the vicinity of the wall of the 
obstacle. 
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